Belgian neurotech startup Farow raises \$1.9M to expand its Al platform for epilepsy and Parkinson's disease

Hasselt, Belgium - Oct 20 2025

Farow, a Belgian neurotechnology startup, has secured \$1.9 million in funding to expand its AI-driven tools that improve everyday life for people living with neurological conditions. Its digital applications enable faster, more accurate diagnoses and treatment, and could evolve into stand-alone digital therapies.

Farow (formerly known as Epihunter) combines EEG brain-wave sensors with advanced AI to monitor and interpret brain activity in real time. Its technology helps people with the condition, families and clinicians better understand and manage neurological disorders such as epilepsy. The startup, founded by Tim Buckinx (ex-Bose), launched the first internationally validated detection system for absence seizures under the name Epihunter. Absence seizures are brief lapses in awareness, sometimes occurring up to 50 times per day. The consequences for school-aged children can be serious, explains pediatric neurologist Prof. Dr. Lieven Lagae (University Hospitals Leuven, Belgium).

"Imagine watching a movie. Missing a few seconds now and then might not seem like a big deal," says Prof. Dr. Lagae. "But when it happens repeatedly, as it does with absence seizures, you eventually lose the plot. In a classroom, this means pupils fall behind academically. Unfortunately, as many as one in three children who experience these silent, often mislabeled, seizures end up in special education."

For more than 1 in 3 diagnosed with epilepsy, even combining several drugs does not control their unpredictable seizures. At Farow, we objectively measure the effectiveness of such treatments.

Tim Buckinx, Farow CEO and founder

Brainwave analysis in real-time

Farow's first product, Epihunter, pairs a lightweight EEG headband with proprietary AI software to detect, log and signal absence seizures in real-time.

"So far, hundreds of people and families have used Epihunter to reduce the impact of these silent, hard-to-notice seizures," says Tim Buckinx. "In a classroom, for example, our detection system allows teachers to repeat instructions, or simply offer understanding when a student 'zones out.' Most importantly, it helps remove unfair labels and increases awareness of absence seizures, which are often misunderstood or misdiagnosed."

Rebranding to reflect broader ambitions

As its technology expands beyond epilepsy, the company is rebranding as Farow to reflect its broader mission across brain health. The fresh funding will accelerate development of solutions for other brain conditions. The name *Epihunter* will remain for its epilepsy-focused products, while *Neurovado* will cover solutions for Parkinson's disease.

"Our goal is to reduce the impact of brain disorders and support neurologists with faster diagnoses and more effective treatments," says Tim. "We also want to help test new medications and develop innovative digital therapies. For example, we are extending our platform to detect non-convulsive status epilepticus (NCSE) - seizures that can last from 30 minutes to several days with fluctuating awareness." Tim says. "We're also targeting myoclonic seizures, brief muscle jerks that are notoriously hard to detect."

Contributing to drug development

Data from Farow's platform is already supporting drug development and their platform is already supporting clinical studies.

"For 60 to 70% of people with epilepsy, medication works well. But for more than 30%, even combining several drugs does not control their unpredictable seizures," Tim explains. "Recently, U.S.-Canadian biotech Bright Minds Biosciences initiated a Phase II trial for treatment-resistant epilepsy." Tim adds. "Our technology is part of that study, helping researchers objectively measure the drug's real-world effectiveness."

Expanding to Parkinson's disease

Farow is also targeting Parkinson's disease, where 80% of patients experience freezing of gait, a sudden inability to move as the brain fails to send the right signal to the legs.

"This often leads to falls, injuries, and loss of confidence. Many people stop going outside, which worsens social isolation." says Tim. "Treatments, medication or implants, often do not solve this issue. Techniques using visual or auditory cues exist and are effective, yet don't address the growing problem of social isolation. Our Neurovado platform is in a proof-of-concept study to address exactly that."

Experienced investor support

The funding round brings together a mix of returning and new investors. Existing investors include imec.istart, BlueHealth Innovation Fund, and Hans Bracquené. They are joined by Rosalie Declercq, COO Wim Eeraerts, Fried Vancraen and Hilde Ingelaere (Materialise), the Limburg-based fund Entrevest, Maarten Wolleswinkel (Executive Chairman,Oaklins Netherlands), and a private UK investor. Professional goalkeeper Simon Mignolet participated in an earlier round.

"We want to make the biggest possible positive impact on the daily lives of people with brain disorders. That's what sets us apart as Farow," concludes Tim.

About Farow

- Formerly known as Epihunter, headquartered in Flanders, Belgium.
- Farow develops digital health solutions for people with neurological disorders. By combining wearable EEG brain sensors with AI, Farow delivers real-time insights and interventions that improve care, accelerate diagnosis, and support both digital and pharmaceutical treatment development. The company is currently building digital platforms for epilepsy (Epihunter) and Parkinson's disease (Neurovado).
- The Farow team collaborates with international universities and hospitals and is advised by leading neurologists from Belgium and abroad.

Press inquiries

For more information or to request an interview with CEO and founder Tim Buckinx, please contact Hogne Ulla on +32 492 40 85 82 or reach out by mail to info@epihunter.com.

More information is available at www.farow.health and www.epihunter.com.

A digital version of this press release and a media kit including highres imagery can be found <u>here</u>.